OPTIMIZATION OF EXPRESSION CONDITIONS FOR CHIMERIC SM PROTEIN OF SARS-COV-2
Keywords:
chimeric SM protein, E. coli, expression, SARS-CoV-2, optimisation, isopropyl-β-D-1-thiogalactopyranoside.Abstract
Recombinant protein expression in E. coli remains one of the most common and cost-effective methods for producing target proteins for scientific and biotechnological purposes. The success of this process is largely determined by the optimisation of cultivation conditions, including inoculation parameters, the presence of selective agents, and the expression induction regime. This study investigates the influence of key factors on the expression of the recombinant SM protein of SARS-CoV-2 in E. coli. The main focus was on inoculum dilution, the presence of ampicillin in the culture medium, and the concentration of IPTG inducers during incubation at 37 °C 4 hours before induction and 4 hours after. The results showed that an optimal inoculum dilution of 1:100 provides maximum protein yield with balanced culture growth. The presence of ampicillin ensures stable plasmid retention and maintenance of plasmid-carrying cell cultures, which has a positive effect on productivity. The use of IPTG at a concentration of 0.5 mM enables a high level of expression to be achieved without a significant reduction in growth. The selected conditions increase the efficiency of recombinant SM protein production and can be applied in process scale-up.
References
Noorabad Gh.M., Ghasemi Y., Mahdavi M., Aghasadeghi M.R., Zarei S. Recombinant subunits of SARS-CoV-2 spike protein as vaccine candidates to elicit neutralizing antibodies // Journal of Clinical Laboratory Analysis. – 2022. – Vol. 36, No. 6. – P. e24328. – DOI: 10.1002/jcla.24328.
Karimi S., Nazarian S., Sotoodehnejadnematalahi F., Dorostkar R., Amani J.Designing and expression of recombinant chimeric spike protein from SARS-CoV-2 in Escherichia coli and its immunogenicity assessment // Iranian Journal of Pharmaceutical Research. – 2023. – Vol. 22, No. 1. – P. e137751. – DOI: 10.5812/ijpr-137751.
McGuire B. E., Mela J. E., Thompson V. C., Cucksey L.R., Stevens C.E., McWhinnie R.L., Nano F.E. Escherichia coli recombinant expression of SARS-CoV-2 protein fragments // Microbial Cell Factories. – 2022. – Vol. 21. – P. 21. – DOI: 10.1186/s12934-022-01753-0.
Yoshizue T., Brindha S., Wongnak R., Takemae H., Both M., Mizutani, T., Kuroda, Y. Antisera Produced Using an E.Сoli-Expressed SARS-CoV-2 RBD and Complemented with a Minimal Dose of Mammalian-Cell-Expressed S1 Subunit of the Spike Protein Exhibits Improved Neutralization // International Journal of Molecular Sciences. – 2023. – Vol. 24, No. 13, Article 10583. – DOI: 10.3390/ijms241310583.
Expression and purification of recombinant proteins [Экспрессия и очистка рекомбинантных белков] // Current Protocols in Protein Science. – 2015. – Том 80, дополнительный выпуск 6. – Статья 6.1. – DOI: 10.1002/0471140864.ps0601s80.
Atroshenko, D. L., Sergeev, E. P., Golovina, D. I., Pometun, A. A. (2024). Additivities for soluble recombinant protein expression in cytoplasm of Escherichia coli. Fermentation, 10(3), 120. https://doi.org/10.3390/fermentation10030120.
Zweng S., Mendoza-Rojas G., Altegoer, F. (2023). Simplifying recombinant protein production: Combining Golden Gate cloning with a standardized protein purification scheme. arXiv. https://arxiv.org/abs/2310.06456.
Kim W. S., Kim J. H., Lee J., Ka S. Y., Chae H. D., Jung I., Jung, S. T., Na, J. H. (2022). Functional expression of the recombinant spike receptor binding domain of SARS-CoV-2 Omicron in the periplasm of Escherichia coli. Bioengineering, 9(11), 670. https://doi.org/10.3390/bioengineering9110670.
McGuire B. E., Mela J. E., Thompson V. C., Cucksey L. R., Stevens C. E., McWhinnie R. L., Winkler D. F. H., Pelech S., Nano F. E. (2022). Escherichia coli recombinant expression of SARS-CoV-2 protein fragments. Microbial Cell Factories, 21(1), 21. https://doi.org/10.1186/s12934-022-01753-0.
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. –1970. – Vol. 227. –P. 680-685.
Росано, Г. Л., Чеккарелли, Э. А. Экспрессия рекомбинантных белков в Escherichia coli: достижения и проблемы // Микробиология. – 2014. – Т. 5. – С. 172. – DOI: 10.3389/fmicb.2014.00172.
Сёренсен, Х. П., Мортенсен, К. К. Современные генетические стратегии экспрессии рекомбинантных белков в Escherichia coli // Журнал биотехнологии. – 2005. – Т. 115, № 2. – С. 113–128. – DOI: 10.1016/j.jbiotec.2004.08.004.
Sivashanmugam, A., Murray, V., Cui, C., Zhang, Y., Wang, J., & Li, Q. (2009). Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Science, 18(5), 936–948. https://doi.org/10.1002/pro.102.
Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172. https://doi.org/10.3389/fmicb.2014.00172.
Choi et al., 2006, Choi, J. H., Keum, K. C., & Lee, S. Y. Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science, 61(3), 876–885. https://doi.org/10.1016/j.ces.2005.03.031.
Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 10(5), 411–421. https://doi.org/10.1016/S0958-1669(99)00003-8.
Balbás, P. (2001). Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Molecular Biotechnology, 19(3), 251–267. https://doi.org/10.1385/MB:19:3:251.
Restrepo-Pineda S., Rosiles-Becerril D., Vargas-Castillo A.B., Ávila-Barrientos L.P., Luviano A., Sánchez-Puig N., García-Hernández E., Pérez N.O., Trujillo-Roldán M.A., Valdez-Cruz N.A. Температура индукции влияет на структуру рекомбинантных тел включения HuGM-CSF в термоиндуцируемой Escherichia coli // Electronic Journal of Biotechnology. -2022.-Т.59.